Polymeric bidimensional self-assembling of $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right](\mathrm{R}=m$-acetyl) through metal- η^{2}, η^{2}-arene π-interactions and non classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonding: Synthesis and X-ray characterization of a bis diaryl symmetric-substituted triazenide complex of $\mathrm{Hg}(\mathrm{II})$

Manfredo Hörner *, Gelson Manzoni de Oliveira *, Eduardo Giuliani Koehler, Lorenzo do CantoVisentin

Departamento de Química, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil

Received 19 November 2005; received in revised form 5 December 2005; accepted 5 December 2005
Available online 19 January 2006

Abstract

Deprotonated 1,3-bis(3-acetylphenyl)triazene reacts with $\mathrm{Hg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ and pyridine to give light-yellow crystals of $\left\{\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]\right\}_{n}(\mathrm{R}=$ acetyl $)$. The tectons $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right]$ are linked to pairs as centrosymmetric dimers through reciprocal metal- η^{2}-arene π-interactions. The dimeric units are operated by a screw axis 2_{1} parallel to the crystallographic direction [010], also through a reflection-translation plane parallel to the c-axis, resulting a supramolecular bidimensional (2D) assembling of the dimeric tectons through non classical $\mathrm{C}-\mathrm{H} \cdots(\mathrm{O}) \mathrm{CCH}_{3}$ bonding. © 2005 Elsevier B.V. All rights reserved.

Keywords: Triazenes; Triazenide-complexes; Supramolecular assembling of Hg complex-tectons; $\mathrm{Hg}-\eta^{2}$-arene π-interactions

1. Introduction

At our days it is well known that selective, directional and strongly attractive noncovalent interactions can induce the self-assembly of predictable supramolecular aggregates. The molecules which play the role of building blocks in a self-assembled, ordered supramolecular structure are called tectons [1-3]. According to Simard and coworkers [2], a tecton (from Greek, tekton, builder) is defined as any molecule whose interactions are dominated by particular associative forces that induce the self-assem-

[^0]bly of an organized network with specific architectural or functional features. The design and construction of multicomponent supermolecules or supramolecular arrays utilizing non-covalent bonding of tectons would be called supramolecular synthesis [3]. Thus, the supramolecular synthesis exploits successfully hydrogen-bonding and other types of non-covalent interaction, in building supramolecular systems [3-5].

Newly, we have shown that triazenide complexes of $\mathrm{Hg}(\mathrm{II})$ are tectons with a remarkably good ability to selfassemble through metal- η-arene π-interactions: the synthesis and characterization of $\left\{\mathrm{Hg}\left[\mathrm{PhN}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3}(\mathrm{H}) \mathrm{Ph}\right]\right.$ $\left.\left(\mathrm{NO}_{3}\right)\right\}$ [6] - a rare $\mathrm{Hg}(\mathrm{II})$ complex containing two phenyltriazene chains - is one of the few examples with evidence that besides the intramolecular metal- N bonds also intermolecular metal-arene π-interactions perform a significant
role in the architecture of the crystal lattice. In $\left\{\mathrm{Hg}\left[\mathrm{PhN}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3}(\mathrm{H}) \mathrm{Ph}\right]\left(\mathrm{NO}_{3}\right)\right\}$ the $\mathrm{Hg}(\mathrm{II})$ ions of the tectonic units are additionally coordinated by two peripheral phenyl rings of two neighboring complexes. The two phenyl rings are located parallel to the main molecular plane and coordinate the $\mathrm{Hg}(\mathrm{II})$ ion in a $\eta^{2}, \eta^{2} \pi$ type of bonding. We have also successfully investigated the possibility to achieve a $\mathrm{Hg}-\eta^{2}$-arene dimerization by blocking one of the axial positions of the $\mathrm{Hg}(\mathrm{II})$ ion with pyridine [7]. In the complex $\quad\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)_{2} \mathrm{Py}_{2} \quad\left(\mathrm{R}=\mathrm{NO}_{2}\right.\right.$, $\left.\mathrm{R}^{\prime}=\mathrm{F}\right)$, the tectons $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)_{2} \mathrm{Py}\right]$ are linked in pairs as centrosymmetric dimers through reciprocal $\mathrm{Hg}-\eta^{2}$-arene secondary interactions. The dimeric units attain additionally intramolecular, secondary $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ interactions and are operated by translation in the crystallographic direction [100], assembling unidimensional chains $\left\{\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)_{2} \mathrm{Py}\right]_{2}\right\}_{n}$ linked through non classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the elementary cell these chains are related in pairs through an inversion centre, without (extended) bidimensional interactions. The supramolecular synthesis of a tectonic bidimensional (2D) $\mathrm{Hg}(\mathrm{II})$-triazenide self-assembling has been achieved with the preparation of polymeric $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)_{2}\right]_{n}$ $\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}), \mathrm{R}^{\prime}=\mathrm{F}\right][8]$, in which the $\mathrm{Hg}(\mathrm{II})$ ions represent the inversion centers of tectons comprised by planar $\mathrm{Hg}(\mathrm{II})$-bis diaryl-substituted triazenide moieties, which are disposed as bidimensional chains, linked in one dimension through metalocene alike $\mathrm{Hg}-\eta^{2}, \eta^{2}$-arene π-interactions and in the second one through non classical C $\mathrm{H} \cdots(\mathrm{O}) \mathrm{CCH}_{3}$ hydrogen bonding. The above-mentioned compounds can be viewed as tectonic arrays assembled through intermolecular, secondary bonds which support the multiple stereochemistry requisites for a wide variety of structures, according to the necessity of self-assembling of their crystal lattices.

With the aim, to achieve a bidimensional, supramolecular assembling of symmetrical substituted triazenide chains, but starting from $\mathrm{Hg}-\eta^{2}$-arene dimers, we have optimized the synthesis of $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)_{2} \mathrm{Py}\right]_{2} \quad(\mathrm{R}=$ $\mathrm{NO}_{2}, \mathrm{R}^{\prime}=\mathrm{F}$) [7] using 1,3-bis(3-acetylphenyl)triazene instead of asymmetrical substituted 1-(2-fluorophenyl)-3-(4-nitrophenyl)triazene. We report here on the synthesis and the X-ray characterization of bidimensional selfassembled $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right](\mathrm{R}=m$-acetyl), a symmetric-substituted triazenide complex polymer of $\mathrm{Hg}(\mathrm{II})$. Characteristic for the new complex is the dimerization of the $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]$ tectons through reciprocal $\mathrm{Hg}-\eta^{2}$-arene secondary interactions and the expanding of the unidimensional, dimeric chains to a bidimensional arrangement through non classical C $\mathrm{H} \cdots(\mathrm{O}) \mathrm{CCH}_{3}$ interactions.

2. Experimental

All manipulations were carried out under nitrogen by use of standard Schlenk techniques.
2.1. $\left[\mathrm{Hg}^{I I}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]_{2}(\mathrm{R}=\mathrm{m}$-acetyl $)$ bis \{bis[1,3-bis(3-acetylphenyl) triazenide]pyridinylmercury (II) \}

Small scrapings of metallic sodium were added under stirring to a solution of $0.084 \mathrm{~g}(0.30 \mathrm{mmol})$ of $1,3-\mathrm{bis}(3-$ acetylphenyl)triazene in 10 ml of anhydrous acetone. To the yellow solution of the deprotonated ligand 0.048 g $(0.15 \mathrm{mmol})$ of $\mathrm{Hg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ dissolved in 5 ml of absolute methanol was added. After 24 h stirring, 2 g of anhydrous magnesium sulfate is added and the mixture is stirred further during $1 / 2 \mathrm{~h}$. The mixture was filtered and the solvent was evaporated. The residual yellow solid was dissolved in an absolute mixture of tetrahydrofurane $(10 \mathrm{ml}) /$ pyridine $(3 \mathrm{ml})$. Prismatic light-yellow crystals were obtained after slow evaporation of the solvent at room temperature within two weeks.

Properties: prismatic light-yellow crystalline substance. $\mathrm{C}_{37} \mathrm{H}_{33} \mathrm{HgN}_{7} \mathrm{O}_{4}$ (840.29). Yield: 0.041 g (0.049 mmol), 33% based on $\mathrm{Hg}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$. Melting point: 204-206 ${ }^{\circ} \mathrm{C}$.

IR (KBr) free ligand 1,3-bis(3-acetylphenyl)triazene: $3253[\mathrm{~s}, v(\mathrm{~N}-\mathrm{H})], 1682[\mathrm{vs}, v(\mathrm{C}=\mathrm{O})], 1530[\mathrm{vs}, v(\mathrm{C}-\mathrm{O})]$, $1402[\mathrm{~m}, v(\mathrm{~N}=\mathrm{N})], 1192 \mathrm{~cm}^{-1}\left[\mathrm{~s}, v_{\mathrm{s}}(\mathrm{N}-\mathrm{N})\right]$.
$\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]_{2} \quad\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right]$: the $\nu \mathrm{N}-\mathrm{H}$ band is absent.

2.2. Crystallography

Data were collected with a Bruker APEX II CCD diffractometer and graphite-monochromatized Mo $\mathrm{K} \alpha$ radiation. The data reduction and the absorption correction were performed using saint [9] and sadabs [10] programs, respectively. The structure of $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2}-\right.$ Py_{2} ($\mathrm{R}=m$-acetyl) was solved by direct methods [11] and refined on F^{2} with anisotropic temperature parameters for all non H atoms [12]. H atoms of the phenyl and methyl groups were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$ for Csp^{2} and $0.97 \AA$ for Csp^{3} atoms) and treated as riding on their respective C atoms, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\mathrm{eq}} \mathrm{Csp}^{2}$ and $1.5 U_{\mathrm{eq}} \mathrm{Csp}^{3}$. The crystallographic parameters and details of data collection and refinement are given in Table 1.

3. Results and discussion

Crystal data and experimental conditions are given in Table 1. Selected bond distances and angles of the title complex are listed in Table 2; Fig. 1 shows the molecular structure of the tecton $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]$ $\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right.$] in a thermal ellipsoid representation [13], Fig. 2 shows a section of the polymeric bidimensional lattice, linked through secondary metal $-\eta^{2}, \eta^{2}$-arene π-interactions and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonding (dashed lines).

In a single tecton $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]$ $\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right]$ the $\mathrm{Hg}(\mathrm{II})$ centre is planar coordinated by two triazenide ions through two primary $\mathrm{Hg}-\mathrm{N}$ bonds $[\mathrm{Hg}-\mathrm{N}(11)=2.102(5), \quad \mathrm{Hg}-\mathrm{N}(21)=2.107(6) \AA]$ and two

Table 1
Crystal data and structure refinement for $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]$
($\mathrm{R}=m$-acetyl)
Empirical form

Formula weight

T (K)
Radiation, $\lambda(\AA)$
Crystal system, space group
Unit cell dimensions
$a(\AA)$
$b(\AA)$
$c(\AA)$
$\alpha\left({ }^{\circ}\right)$
$\beta\left({ }^{\circ}\right)$
$\gamma\left({ }^{\circ}\right)$
Volume (\AA^{3})
Z, calculated density $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$
Absorption coefficient $\left(\mathrm{mm}^{-1}\right)$
$F(000)$
Crystal size (mm)
θ Range (${ }^{\circ}$)
Index ranges
Reflections collected
Independent reflections
Completeness to θ max.
Maximum and
minimum transmission
Refinement method
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indices $[I>2 \sigma(I)]$
R indices (all data)
Extinction coefficient
Largest difference
peak and hole (e \AA^{-3})

Table 2
Selected bond lengths [\AA] and angles [${ }^{\circ}$] for $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right.$] ($\mathrm{R}=m$-acetyl)

Bond lengths		Bond angles	
$\mathrm{Hg}-\mathrm{N}(11)$	$2.102(5)$	$\mathrm{N}(11)-\mathrm{Hg}-\mathrm{N}(21)$	$174.53(18)$
$\mathrm{Hg}-\mathrm{N}(21)$	$2.107(6)$	$\mathrm{N}(11)-\mathrm{Hg}-\mathrm{N}(51)$	$93.87(15)$
$\mathrm{Hg}-\mathrm{N}(51)$	$2.521(5)$	$\mathrm{N}(21)-\mathrm{Hg}-\mathrm{N}(51)$	$91.51(15)$
$\mathrm{Hg} \cdots \mathrm{N}(13)$	$2.693(5)$	$\mathrm{N}(11)-\mathrm{Hg} \cdots \mathrm{N}(13)$	$51.23(17)$
$\mathrm{Hg} \cdots \mathrm{N}(23)$	$2.716(6)$	$\mathrm{N}(21)-\mathrm{Hg} \cdots \mathrm{N}(13)$	$129.68(18)$
$\mathrm{Hg} \cdots \mathrm{C}(16)^{\prime}$	$3.487(6)$	$\mathrm{N}(21)-\mathrm{Hg} \cdots \mathrm{N}(23)$	$50.66(19)$
$\mathrm{Hg} \cdots \mathrm{C}(15)^{\prime}$	$3.574(7)$	$\mathrm{N}(13) \cdots \mathrm{Hg} \cdots \mathrm{N}(23)$	$178.25(15)$
$\mathrm{C}(56) \cdots \mathrm{O}(4)^{\prime \prime}$	$3.078(8)$	$\mathrm{N}(11)-\mathrm{Hg} \cdots \mathrm{C}(16)^{\prime}$	$70.89(18)$
$\mathrm{C}(56)-\mathrm{H}(56)$	0.9300	$\mathrm{~N}(21)-\mathrm{Hg} \cdots \mathrm{C}(16)^{\prime}$	$103.69(18)$
$\mathrm{N}(13)-\mathrm{N}(12)$	$1.290(7)$	$\mathrm{N}(11)-\mathrm{Hg} \cdots \mathrm{C}(15)^{\prime}$	$83.93(19)$
$\mathrm{N}(11)-\mathrm{N}(12)$	$1.326(7)$	$\mathrm{N}(21)-\mathrm{Hg} \cdots \mathrm{C}(15)^{\prime}$	$91.15(19)$
$\mathrm{N}(22)-\mathrm{N}(23)$	$1.267(8)$	$\mathrm{C}(16)^{\prime} \cdots \mathrm{Hg} \cdots \mathrm{C}(15)^{\prime}$	$22.33(17)$
$\mathrm{N}(22)-\mathrm{N}(21)$	$1.320(7)$	$\mathrm{N}(22)-\mathrm{N}(21)-\mathrm{Hg}$	$113.1(4)$
		$\mathrm{C}(31)-\mathrm{N}(21)-\mathrm{Hg}$	$129.0(4)$
		$\mathrm{N}(22)-\mathrm{N}(23) \cdots \mathrm{Hg}$	$84.8(4)$

Symmetry transformations used to generate equivalent atoms: $\left(^{\prime}\right)-x$, $-y+1,-z ;\left(^{\prime \prime}\right) x,-y+3 / 2, z-1 / 2$.
secondary ones $[\mathrm{Hg} \cdots \mathrm{N}(13)=2.693(5), \mathrm{Hg} \cdots \mathrm{N}(23)=$ 2.716(6) A]. The square pyramidal configuration of $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]$ is achieved with a neutral

Fig. 1. The molecular structure with atom-labeling scheme of the tecton [$\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}$] $\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right]$ [13]. Displacement ellipsoids at the 50% level. Dashed lines represent secondary interactions. Symmetry transformations used to generate equivalent atoms: $\left({ }^{\prime}\right)-x$, $-y+1,-z$.

Fig. 2. Section of the supramolecular, bidimensional (2D) assembling of $\left\{\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]_{2}\right\}_{n}\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right]$, showing five dimeric moieties. Intermolecular, centrosymmetric $\mathrm{Hg}-\eta^{2}, \eta^{2}$-arene π-interactions (along the b-axis) and non-classical $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonding (c-axis) in dashed lines. Symmetry transformations used to generate equivalent atoms: (') $-x,-y+1,-z ;\left(^{\prime \prime}\right) x,-y+3 / 2, z-1 / 2$.
pyridine ligand in the apical position $[\mathrm{Hg}-\mathrm{N}(51)=$ $2.521(5) \AA]$. The $\mathrm{Hg}(\mathrm{II})$ ion is $0.069(2) \AA$ out of the plane settled by the four coordinating nitrogen atoms. The pyridine ring attains with this plane an angle of $89.5(1)^{\circ}$. This small deviation of the ideal interplanar angle $\left(90^{\circ}\right)$ can be justified because of the non classical $\mathrm{C}-\mathrm{H} \cdots(\mathrm{O}) \mathrm{CCH}_{3}$
(hydrogen) bonding of the lattice, involving the ortho $\mathrm{C}-\mathrm{H}$ group of the pyridine ring. The tectons $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNN}\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right]$ are linked to pairs as centrosymmetric dimers through reciprocal Hg -arene secondary interactions. The dimeric units are operated by a screw axis 2_{1} parallel to the crystallographic direction [$\left.\begin{array}{lll}0 & 1 & 0\end{array}\right]$, also through a reflection-translation plane parallel to the c-axis, resulting a supramolecular bidimensional (2D) assembling of the dimeric tectons through the above mentioned non classical $\mathrm{C}-\mathrm{H} \cdots(\mathrm{O}) \mathrm{CCH}_{3}$ bonding $\left[\mathrm{C}(56) \cdots \mathrm{O}(4)^{\prime \prime}=\right.$ $3.078(8) \AA, \mathrm{C}(56)-\mathrm{H}(56) \cdots \mathrm{O} 4^{\prime \prime}=125.03^{\circ}$, symmetry code (") $x, 3 / 2-y, 1 / 2+z]$.

Fig. 2 shows the bidimensional crystal lattice of five dimeric tectons $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]_{2}$ linked through the $\mathrm{C}-\mathrm{H} \cdots(\mathrm{O}) \mathrm{CCH}_{3}$ secondary bonds in the $b c$ plane. The bonding phenyl rings are oriented parallel to the main molecular plane and coordinate the Hg atom in a π type of bonding. Two carbon atoms of the phenyl rings have remarkably short distances to the Hg (II) ion: these shorter secondary interactions are of $3.487(6)\left[\mathrm{Hg} \cdots \mathrm{C}(16)^{\prime}\right]$ and $3.574(7) \AA\left[\mathrm{Hg} \cdots \mathrm{C}(15)^{\prime}\right]$, symmetry code $\left(^{\prime}\right)-x$, $-y+1,-z$. The distance of the π-interaction from Hg to the midpoint of the $\mathrm{C}(15)^{\prime}-\mathrm{C}(16)^{\prime}$ bond is $3.51 \AA$, somewhat larger than the distance from the metallic ion to the midpoint of the $\mathrm{C}\left(31^{\mathrm{I}}\right)-\mathrm{C}\left(36^{\mathrm{I}}\right)$ bond [$3.38 \AA$, symmetry code $\left.\left.{ }^{\mathrm{I}}\right) x, y-1, z\right]$ in $\left\{\mathrm{Hg}\left[\mathrm{PhN}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3}(\mathrm{H}) \mathrm{Ph}\right]\left(\mathrm{NO}_{3}\right)\right\}$ [6], but identical to the midpoint distance $\mathrm{C}(34)^{\prime}-\mathrm{C}(35)^{\prime}$ [symmetry code (') $-x+1,-y,-z$] in the complex $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)_{2} \mathrm{Py}\right]_{2}\left(\mathrm{R}=\mathrm{NO}_{2}, \mathrm{R}^{\prime}=\mathrm{F}\right)$ [7].

The angles $\mathrm{C}-\mathrm{Hg}-\mathrm{C}$ of the metal-arene π interactions are $22.33(17)^{\circ} \quad\left[\mathrm{C}(16)^{\prime} \cdots \mathrm{Hg} \cdot \cdots \mathrm{C}(15)^{\prime}\right], \quad 75.3(4)^{\circ} \quad[\mathrm{Hg} \cdot \cdots$ $\left.\mathrm{C}(15)^{\prime}-\mathrm{C}(16)^{\prime}\right]$ and $82.4(4)^{\circ}\left[\mathrm{C}(15)^{\prime}-\mathrm{C}(16)^{\prime} \cdots \mathrm{Hg}\right]$, fairly close to the angles $\left[22.5(1)^{\circ}\left(\mathrm{C} 34^{\prime} \cdots \mathrm{Hg} \cdots \mathrm{C} 35^{\prime}\right)\right.$, $74.3(3)^{\circ}$ $\left(\mathrm{Hg} \cdots \mathrm{C} 34^{\prime}-\mathrm{C} 35^{\prime}\right), 83.3(3)^{\circ}\left(\mathrm{C} 34^{\prime}-\mathrm{C} 35^{\prime} \cdots \mathrm{Hg}\right)$] found in $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}^{\prime}\right)_{2} \mathrm{Py}\right]_{2}\left(\mathrm{R}=\mathrm{NO}_{2}, \mathrm{R}^{\prime}=\mathrm{F}\right)$ [7].

As a conclusion, and like the other mentioned examples, the asymmetry of the $\mathrm{Hg} \cdots \mathrm{C} \pi$ contacts in $\left[\mathrm{Hg}^{\mathrm{II}}\left(\mathrm{RC}_{6} \mathrm{H}_{4} \mathrm{NNNC}_{6} \mathrm{H}_{4} \mathrm{R}\right)_{2} \mathrm{Py}\right]\left[\mathrm{R}=\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right]$ allows to exclude the possibility of occurrence of intermolecular interactions of the type $\mathrm{Hg}-\eta^{6}$-arene.

4. Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre CCDC No. 290251. Further details of the crystal structures investigations are available free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgements

This work received partial support from CNPq (Proc. 475294/2004-1). M.H. thanks CNPq (Proc. 301310/20033) for grant.

References

[1] I. Haiduc, F.T. Edelmann, Supramolecular Organometallic chemistry, Wiley-VCH Verlag GmbH, Weinheim, Germany, 1999, p. 8.
[2] S. Simard, D. Su, J.D. Wuest, J. Am. Chem. Soc. 113 (1991) 4696.
[3] M.C.T. Fyfe, J.F. Stoddart, Acc. Chem. Res. 30 (1997) 393.
[4] G.R. Desiraju, Angew. Chem. 107 (1995) 2541; Angew. Chem., Int. Ed. 34 (1995) 2311.
[5] G.M. Whitesides, E.E. Simanek, J.P. Mathias, C.T. Seto, D.N. Chin, M. Maamen, D.M. Gordon, Acc. Chem. Res. 28 (1995) 37.
[6] M. Hörner, A.J. Bortoluzzi, J. Beck, M. Serafin, Z. Anorg. Allg. Chem. 28 (2002) 1104.
[7] M. Hörner, G. Manzoni de Oliveira, J.A. Naue, J. Daniels, J. Beck, J. Organomet. Chem., (in press).
[8] M. Hörner, G. Manzoni de Oliveira, V.F. Giglio, L. do Canto Visentin, F. Broch, J. Beck, Inorg. Chim. Acta, (submitted).
[9] Bruker AXS Inc., Madison, Wisconsin 53711-5373, © 2005, saint V7.06A, - Bruker Nonius area detector scaling and absorption correction - V2.10.
[10] G.M. Sheldrick, sadabs, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen, Germany, 1996.
[11] M.C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G.L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Cryst. 38 (2005) 381.
[12] G.M. Sheldrick, Shelxl-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.
[13] L. Zsolnai, H. Pritzkow, zortep, Program for Personal computer, University of Heidelberg, Germany, 1996.

[^0]: * Corresponding authors. Tel.: +55 553220 8056; fax: +55 5532208031.

 E-mail addresses: hoerner@smail.ufsm.br (M. Hörner), manzoni@ quimica.ufsm.br (G.M. de Oliveira).

